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TECHNICAL NOTES 

On computing radiative heat flux distributions using the F,,, method 
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FOR SOLVING radiative transport problems in one- done, the integral in equation (1) becomes 
dimensional planar media, the F, method is an efficient and 1 
accurate technique. The approach was developed by Siewert 
and co-workers [l-3] and has been used for computing heat s 
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transfer by a number of investigator [3-141. So far, however, 
only boundary heat fluxes have been reported. Results for heat - 
flux distributions throughout themedium have yet to be given. 

d( - {)t e-“-t’:s d<. (4) 

While boundary heat fluxes are readily evaluated in terms of 
simple weighted sums of the coefficients in the F, expansion of 

In the above equations, p is the cosine of the altitude angle, 4 is 

the exit intensities, heat fluxes internal to the medium must be 
the eigenfunction for the continuum eigenvalues and N is its 

comnuted from the nrimarv results associated with the 
norm. These functions are given by (cf. [4]) 

sin&lar eigenfun~tion-expansion. A computational problem 
is encountered in such evaluations. The purpose of this 
communication is to demonstrate how this problem may be 
resolved. 

The heat flux within an anisotropically scattering planar 
slab of finite optical thickness is given from the singular 
eigenfunction expansion technique by [IS] 

is 1 
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where the notation of ref. [4] has been used : 5 is the optical 
depth coordinate measured normal to the interface 
(0 G T Q ~a), w is the scattering albedo, va is a ~sitive,dis~ete 
eigenvalue (vp > I), k is the number of such eigenvalues, Y is an 
eigenvalue in the continuum range (- 1 < v < 1) and the 
constants A( iv,) plus the function A(v) are expansion 
coefficients which are determined from the boundary 
conditions. The computational difficulty arises in evaluating 
the integral in the above equation since, as discussed below, it 
is numerically ill-conditioned for Y + 0. What is needed is an 
appropriate representation of the function A(v) which avoids 
numerical singularities in this limit. Such a representation is 
readily available. 

It is to be noted that the function A(v) may be evaluated by 
applying the orthogonality properties of the eigenfunctions at 
either boundary [4]. In terms of the intensity distribution at 
the z = 0 boundary, Z(0, /.z), one may write 

1 f-1 

N(v) = v[~2(v)++n2w2v2g2(v, v)], 

where 

in which the symbol P indicates the Cauchy principal value, 
the P, are Legendre polynomials, the (21+ 1)fi are coefficients 
in the phase function expansion, the @i(v) are simple 
aolvnomials in the variable Y and 6(x) is the delta function. _ . 

If the medium is bounded by surfaces which emit diffusely 
and reflect in a partially specular/partially diiuse manner, the 
functions A( + {) and ii( - [) will be given by (cf. [15]) 

+I! bz -A,(T)+PWI+~P~~~ Be(r) (10) 
I=0 1 

A(kS)=- N(L) -1 J I@, P)#,( f 5 P)P dct, 0 G t < 1. (2) where a, and b, are coefficients in the F, representation of the 
exit intensities 14, 151, T is temperature, E is emissivity and pa 

However, if only this form for A(v) is used, equation (1) will be and pd are specular and diffuse reflectivities. The subscripts 1 

numerically singular as v + O- due to the factor exp (-T/V). In and 2 refer to the boundaries at z = 0 and z = T,,, respectively. 

terms of the intensity distribution at the r = ?0 boundary one The functions A,(<) and B,(t) are defined as 

may write 

I 1 
.&(-&<)ei’“!t = - 

i 
Ih,, P)#( + 5, /Act d.u 

A,(t) = 2 
I 
; 4”&--t;,~t)d~~ (11) 

N*r) -1 

=A(fl), oGr<l. (3) g,(5) = -$ 
s 

; P”+%% p) dp. (12) 

Again, if only this form for .4(v) is used, equation (1) will be They are readily computed from recursion relations [4] and 
numerically singular as v -+O+ due to the factor exp are well-behaved for all 4 including < = 0. 
[(Q-r)/v]. To avoid this singular behavior, equation (2) From equations (6)-(10), it is seen that the integrands on the 
may be used for Y > 0 and equation (3) for v < 0. When this is RHS of equation (4) vanish as < --f 0. Therefore, by using the 
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Table 1. Heat flux distributions 

Case A Case B Case C 
T equation (1) c41 equation (1) Cl31 equation (1) Cl31 

0.0 0.4867 0.4867 0.4167 0.4167 0.90706 0.90706 
0.1 0.4120 0.3875 0.8638 
0.2 0.3520 0.3605 0.8250 
0.3 0.3013 0.3351 0.7894 
0.4 0.2574 0.3109 . 0.7564 
0.5 0.2188 0.2878 0.7257 
0.6 0.1844 0.2655 0.6972 
0.7 0.1531 0.2440 0.6707 
0.8 0.1244 0.2232 0.6460 
0.9 0.0974 0.2030 0.6232 
1.0 0.07145 0.07145 0.1834 0.1834 0.60251 0.6025 1 

Case A: o = 0.2, r,, = 1, p” = pd = 0.25, phase function as defined in ref. [4]. 
Case B : w = 0.8, z0 = 1, ps = pd = 0.25, phase function as defined in ref. [4]. 
Case C: w = 0.8, *0 = 1, p” = p* = 0, phase function II defined in ref. [13]. 

representation given by equation (4), the heat flux defined by 
equation (1) may be accurately evaluated numerically. 

To illustrate the above approach, computations were 
performed under the same conditions considered in refs. [4, 
131. The reader is referred to these for definitions of the phase 
functions and the associated discrete eigenvalues. The present 
results are given in Table 1. They correspond to F, 
computations which converged to five significant digits. The 
numerical integrations required by equation (4) were 
performed using Simpson’s rule with 200 uniformly equal 
intervals between 0 and 1. Principal value integrations were 
achieved by letting a node in the integration scheme coincide 
with the point of singularity. Then by skipping over that node 
a numerical approximation to the principal value integral was 
obtained (since the nodes were equally spaced). Cases A and B 
in Table 1 give the heat flux distributions corresponding to 
~,(rT:fx = 1, ~~uT:/n = 0. Each boundary of the slab 
possesses the same specular and diffuse reflection character- 
istics @; = p; E p”, pq = pi E pd). The boundary fluxes 
derived from ref. [4] are also listed. These are obtained from 
Tables 3-5 of [4] by noting from equations (33H37) of [4] that 
for boundary emission of this type 

q(0) = o.s+(p’+pd-l)e-(L) (13) 

q(r,) = (l-pp’-pd)e+(R). (14) 

Case C in Table 1 gives the heat flux distribution 
corresponding to a slab having non-reflecting boundaries 
which is diffusely irradiated at 5 = 0 [13] (equivalent to setting 
E~UT$X = 1, Q(TT$X = 0, p” = pd = 0). In all cases it is 
observed that boundary fluxes computed from equation (4) are 
in exact agreement with those computed in refs. [4, 133 from 
the alternate expressions involving the F, expansion 
coefficients. Also, the heat flux distributions for cases A and B 
agree with those computed in ref. [16] from the P, method. 
Finally, it is to be noted that the approach developed herein 
has recently been applied to computing the azimuthally 
dependent transport problem posed by irradiating a planar 
medium with a collimated beam at oblique incidence [15,17]. 
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INTRODUCTION 

THE BOILING of binary mixtures is of practical significance for 
chemical engineering and heat pump applications. So far, no 
predictive equations of broad generality for the determination 
of nucleate pool boiling heat transfer coefficients for binary 
mixtures have appeared in the literature, although numerous 
experimental investigations were reported. This fact was also 
mentioned in a recent paper [l]. The object of this study is the 
derivation of a correlation to determine these heat transfer 
coefficients. For a detailed literature survey on the subject, the 
reader is directed to refs. [2,3]. Only the literature data found 
to be pertinent to this study will be mentioned. 

Sufficient empirical evidence was given in the literature to 
the effect that, for a given heat flux and pressure, the nucleate 
pool boiling heat transfer coefficient for a binary mixture can 
be considerably lower than the molar average of the nucleate 
pool boiling heat transfer coefficients for the pure components 
of the mixture. Van Wijk et al. [4] gave the following 
explanation for this heat transfer deterioration : the bubbles 
leaving the heated surface are enriched in the volatile 
component (i.e. lower boiling point component). This results 
in a reduction of this particular component in the boiling 
boundary layer in the vicinity of the heated surface. The liquid 
mole fraction of the volatile component in this layer is 
therefore lower than that in the bulk liquid. Consequently, the 
boiling temperature in the layer becomes higher than that in 
the bulk liquid. This can be deduced from a vapour-liquid 
phase equilibrium diagram of a typical binary mixture. For 
nucleate pool boiling, the heat transfer coefficient is a function 

of the wall superheat, i.e. the difference between the wall 
temperature and the liquid boiling temperature. For the 
determination of this heat transfer coefficient for a binary 
mixture, the measured wall superheat (based on bulk liquid 
boiling temperature) is used, whilst the wall superheat in the 
boiling boundary layer is driving the flow of heat. The latter is 
smaller than the former. 

The following explanations were also given to clarify the 
quoted deterioration in heat transfer : 

-the change in bubble growth rate caused by the varying 
resistance to mass transfer of the volatile component in 
diffusing into a growing bubble [S] ; 

-the increase of wall superheat required to activate bubble 
nucleation centres for mixtures, resulting in a less-dense 
bubble population at a given wall superheat as compared 
with that for pure liquids [6] ; 

-the retardation of two of the three principal heat transport 
mechanisms (i.e. vapour-liquid exchange and evaporative 
mechanisms) active in nucleate pool boiling for mixtures 
c71. 

The most popular correlation for the prediction of AT,,,, the 
wall superheat at agiven heat fluxduringnucleate pool boiling 
ofa binary mixture, is from Stephan and Korner [S]. This wall 
superheat is given by the equation : 

ATJA7; = [1+K~y-x~(0.88+0.12x10-5P)] (1) 

where K is an empirical constant different for every binary 
mixture. AT in equation (I), the ideal wall superheat, and the 
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NOMENCLATURE 

thermal diffusivity of liquid [m* s - ‘1 
functions defined in the text 
liquid specific heat [J kg-’ K-r] 
liquid mass diffusivity [m2 s-r] 
heat transfer coefficient [W rn-’ K-‘1 
empirical constant 
number of data 
pressure [Pa] 

AT 

x 

Y 

critical pressure of volatile component Subscripts 
PaI 1 
heat flux rW mm21 2 
latent heat of evaporation [J kg-‘] 
Striven number 
bulk liquid boiling temperature [K] 

i 
m 
W 

wall superheat, i.e. the ditference between 
wall and bulk liquid boiling temnerature 
[K] - - - 
mole fraction of liquid for volatile 
component 
mole fraction of vapour for volatile 
component. 

pure non-volatile component 
pure volatile component 
ideal binary mixture 
real binary mixture 
evaluation for mass fraction basis. 


